М-Модели алгоритмов. Емкость и колмогоровская сложность класса М-полиномов.

Авторы: 
Журнал: 
Страница: 
51
УДК: 
519.7
Выделяется особый класс задач обучения по прецедентам - задачи, элементы которых ограничены разрядной сеткой. Вводится понятие М-моделей алгоритмов обучения. Оценивается колмогоровская сложность и емкость класса М-полиномов и М-полиномов Жегалкина с k-слагаемыми. Вводится понятие сложности и степени сжатия выборки алгоритмами М-моделей.
info_eng: 
The problems with elements bounded by a bit array are axtracted in a special class of learning by precedents problems. A notion of M-Models of learning algorithm is introduced. The Kolmogorov complexity and the VCD of M-polynomials and M-polynomials Zhegalkin with k-component are estimated. The notions of complexity and a degree of compression by algorithms of M-models for training sample are introduced.