О разрешимости сингулярного стохастического уравнения леонтьевского типа с импульсными воздействиями

Журнал: 
Страница: 
48
УДК: 
517.9

Под сингулярным стохастическим уравнением леонтьевского типа понимается специальный класс стохастических дифференциальных уравнений в форме Ито, у которых в левой и правой частях имеются прямоугольные числовые матрицы, образующие сингулярный пучок. Кроме этого, в правой части имеется детерминированное слагаемое, которое зависит только от времени, а также импульсные воздействия. Предполагается, что коэффициент диффузии данной системы задается матрицей, зависящей только от времени. Для изучения рассматриваемых уравнений требуется рассмотрение производных достаточно высоких порядков от свободных членов, включая винеровский процесс. В связи с этим для дифференцирования винеровского процесса мы применяем аппарат производных в среднем по Нельсону от случайных процессов, что позволяет при исследовании уравнения не применять аппарат теории обобщенных функций. В результате получаются аналитические формулы для решений уравнения в терминах производных в среднем случайных процессов.

Ключевые слова: производная в среднем, текущая скорость, винеровский процесс, стохастическое уравнение леонтьевского типа.